# Smart Adaptive Flight Effective Cue (SAFE-Cue), Phase I



Completed Technology Project (2010 - 2010)

### **Project Introduction**

As a means to enhance aviation safety, numerous adaptive control techniques have been developed to maintain aircraft stability and safety of flight in the presence of failures or damage. The techniques apply a wide array of adaptations from simple gain scheduling to on-line learning algorithms. While the ready availability of low cost, reduced scale UAV systems have allowed for many successful flight test demonstrations, applications to piloted aircraft have been more limited. Flight evaluations of various adaptive control applications conducted by NASA and others have shown great promise. In some cases; however, unfavorable pilot-vehicle interactions including pilotinduced oscillations have occurred. Susceptibility to such interactions is more likely when the pilot interacts with a highly nonlinear vehicle that may no longer have predictable response characteristics. To alleviate these unfavorable interactions, Systems Technology, Inc. (STI) proposes the Smart Adaptive Flight Effective Cue or SAFE-Cue that will provide cues to the pilot via an active control inceptor with corresponding command path gain adjustments. The SAFE-Cue will alert the pilot that the adaptive control system is active and provide guidance through a force feedback cue and command attenuation via a command path gain adjustment as a means to retain pilot-vehicle system stability and performance.

#### **Primary U.S. Work Locations and Key Partners**





Smart Adaptive Flight Effective Cue (SAFE-Cue), Phase I

### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 3 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Smart Adaptive Flight Effective Cue (SAFE-Cue), Phase I



Completed Technology Project (2010 - 2010)

| Organizations Performing<br>Work         | Role                       | Туре           | Location               |
|------------------------------------------|----------------------------|----------------|------------------------|
| Systems Technology, Inc                  | Lead<br>Organization       | Industry       |                        |
| • Armstrong Flight Research Center(AFRC) | Supporting<br>Organization | NASA<br>Center | Edwards,<br>California |

### **Primary U.S. Work Locations**

California

### **Project Transitions**

0

January 2010: Project Start



July 2010: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/139924)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Systems Technology, Inc

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

## **Project Management**

### **Program Director:**

Jason L Kessler

#### **Program Manager:**

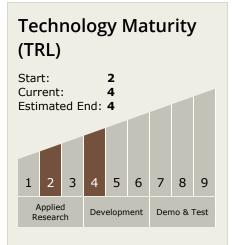
Carlos Torrez

#### **Principal Investigator:**

David H Klyde

#### **Co-Investigator:**

David Klyde




### Small Business Innovation Research/Small Business Tech Transfer

# Smart Adaptive Flight Effective Cue (SAFE-Cue), Phase I



Completed Technology Project (2010 - 2010)



# **Technology Areas**

#### **Primary:**

- TX17 Guidance, Navigation, and Control (GN&C)
  - □ TX17.3 Control
     Technologies
    - └─ TX17.3.1 Onboard Maneuvering / Pointing / Stabilization / Flight Control Algorithms

# **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

